Relationship between maternal iron and cord blood iron status: A prospective study

K Swetha, P Tarakeswararao, M Saisunilkishore
From ‘1Department of Pediatrics, 2Department of Pediatrics, Maharajah Institute of Medical Sciences, Nellimarla, Vizianagram, Andhra Pradesh, India

Correspondence to: Dr. P Tarakeswararao, Department of Pediatrics, Maharajah Institute of Medical Sciences, Nellimarla, Vizianagram, Andhra Pradesh, India. Phone: +91-9441080069. E-mail: ptrao1971@gmail.com

Received - 17 August 2017 Initial Review - 03 September 2017 Published Online - 13 October 2017

ABSTRACT

Background: Iron sufficiency is of paramount importance in the neonatal period. Controversy exists whether the transfer of iron to the fetus from the mother is determined by fetal demands or by maternal iron stores. Numerous studies correlating maternal and neonatal iron stores revealed conflicting results. Aims: To study the relationship between maternal and neonatal iron indices at birth and to observe the impact of gestational age on iron stores in neonates. Methods and Materials: This prospective study was conducted in neonatal care unit of the tertiary hospital. Total 195 mother and newborn pairs were enrolled in the study. Neonates were divided into groups based on gestational age. The maternal venous samples were collected 1 h ± 15 min before the delivery. Cord blood sample and venous samples were drawn from a peripheral vein in neonates who came for follow-up at 4 weeks. Samples were analyzed for hemoglobin (Hb), serum ferritin, serum iron, and total iron-binding capacity. Results: Significant positive correlation was found between maternal Hb and neonatal ferritin (Pearson’s correlation coefficient =0.26, p=0.002) and maternal iron and neonatal iron (Pearson’s correlation coefficient =0.294, p=0.000). Ferritin concentration of cord blood samples in neonates born to mothers with ferritin levels <12 µg/L showed significant correlation. Mean ferritin in preterm neonates (128.9±80.7 µg/dl) was significantly lower than in term neonates (156.9±78.6 µg/dl) (p=0.040). Mean Hb in preterm neonates (14.5±2.1 g/dl) was significantly lower than in term neonates (15.0±2.1 g/dl) (p=0.028). 4-week samples showed significantly lower serum iron concentrations in preterm when compared to term group. Serum ferritin levels at birth showed positive correlation at 4 weeks. (Pearson’s correlation coefficient =0.211, p=0.028). Conclusions: Neonatal iron stores are affected in case of severe maternal iron deficiency indicated by ferritin levels <12 µg/L. Gestational age has a significant impact on neonatal iron stores. Neonates with a deficient iron store at birth likely to have low iron stores at 4 weeks.

Key words: Cord iron indices, Gestational age, Maternal ferritin

Iron is the most common micronutrient deficiency in the developing countries like India. Adequate iron stores are critical for rapidly developing fetal and neonatal organ systems. It is a component of various enzymes and required for neurotransmitter synthesis and myelination of central nervous system during the fetal period and postnatal life. Perinatal iron deficiency leads to long-lasting neurodevelopmental impairment and early onset of postnatal iron deficiency [1,2]. Conversely, the presence of excess free iron has a risk of generating toxic free radicals, especially in preterms which have low levels of iron-binding proteins and immature antioxidant systems [3,4]. This highlights the immense need to maintain adequate iron stores in the perinatal and neonatal period.

Whether a maternal dietary iron transfer to the fetus is related to maternal iron status is still debated. Previous studies on the relationship between maternal and neonatal iron status using multiple parameters showed contrasting results [5]. Understanding relationships between maternal and neonatal iron indices help in formulating the protocols to improve the maternal and neonatal outcome. Therefore, this study was planned to evaluate the relationship between maternal and neonatal iron stores at birth and to observe the effect of gestational age on iron status in newborns at birth and 4 weeks.

MATERIALS AND METHODS

This prospective study was conducted in a tertiary care institution of Andhra Pradesh from November 2014 to August 2016. Approval from the Institutional Ethical Committee and informed consent from parents was obtained. The maternal-newborn pairs delivered during the study were enrolled in the study. Babies with major congenital anomalies, sepsis, and pathological jaundice requiring treatment and twin deliveries were excluded. Mothers with antepartum hemorrhage, infection, and history of blood transfusion in antenatal period were also excluded. Eligible mother-infant pairs were followed from the time of enrollment to 28±4 days. The information on baseline parameters and outcomes was recorded in a standard pro forma. The enrolled mother-infant
pairs were stratified broadly based on gestational age. New Ballard scoring was done for the assessment of gestational age.

The maternal blood samples were collected 1 h ± 15 min before the delivery. After the delivery of the baby, 5 ml of blood collected from the cord by sectioning the cord between two clamps placed 4-5 inches apart. The venous sample was drawn from a peripheral vein in neonates who came for follow-up at 4 weeks. Measurement of hemoglobin (Hb), serum ferritin, serum iron, and total iron-binding capacity (TIBC) was done from these samples. The neonates were followed clinically up to 28±4 days in the neonatal clinic after discharge. The serum ferritin was estimated by fully automated bidirectional interfaced chemiluminescent immunoassay. Serum iron was done by ferrozine method without deproteinization. Serum TIBC was done by spectrophotometric assay. Baseline variables were described using descriptive statistics. Effect of maternal iron indices on neonatal iron indices and the effect of neonatal iron indices at birth on the follow-up iron indices was analyzed by Pearson’s correlation coefficient.

RESULTS

One hundred and ninety-five mother-infant pairs met the eligibility criteria during the study. Of them, seventeen were excluded as their samples were inadequate/hemolyzed and could not be processed and six were excluded as they had abnormally high ferritin levels (>370 µg/L). One hundred and seventy-two mother-infant pairs were included for the final analysis. Males constituted 54.7% (94) and females constituted 45.3% (78) of the cases. The mean gestational age of the neonates enrolled was 37.3±2.3 weeks, and the mean birth weight was 2780±419 g. Among the study population, 125 (72.7%) were term and 47 (27.3%) were preterm. The median (interquartile range) of measured iron indices of mother and cord blood is shown in Table 1. The correlation was analyzed between various maternal iron indices with neonatal iron indices using Pearson’s correlation coefficient (Table 2).

A significant correlation was observed between maternal Hb and neonatal ferritin (Pearson’s coefficient =0.26, p=0.002). A positive correlation was found between maternal iron and neonatal iron (Pearson’s coefficient =0.294, p=0.000). No significant correlation between maternal ferritin and any of the neonatal iron indices was observed (Table 2). The iron indices of babies born to mothers with ferritin level <12 µg/L were compared with those with ferritin level >12 µg/L. A significantly low ferritin concentrations were observed in the neonates born to mothers with ferritin levels <12 µg/L (p=0.02) as shown in Table 3.

The mean neonatal ferritin levels were significantly low in preterm group (128.9±80 µg/dl) as compared to term group (156.9±78.6 µg/dl) (p=0.040). As expected, mean neonatal Hb concentrations were also significantly low in preterm group (14.5±2.1 g/dl) as compared to term group (15.0±2.1 g/dl), (p=0.028). Follow-up samples at 4 weeks showed significantly lower serum iron concentrations in preterms (35.5±33.7 µg/dl) than in term neonates (75.5±54.7 µg/dl) (p=0.009). Neonatal Hb and serum iron values on cord blood samples were found to have a significant correlation with corresponding values at 4 weeks of age. Significant correlation of serum ferritin levels at birth with following levels at 4 weeks was also observed (Pearson’s coefficient =0.211, p=0.028).

DISCUSSION

Iron deficiency is a common nutritional deficiency in pregnancy. It has a significant influence on the maternal and neonatal outcome [6]. Maternal iron transported by serum transferrin binds to transferrin receptor on the maternal side of syncytiotrophoblast. Iron that is taken up is transferred to the receptor on the fetal side of placenta [7]. Increased fetal requirements and maternal iron insufficiency leads to increased expression of TfR receptors resulting in increased availability of iron at the maternal surface for increased placental uptake [8]. It is uncertain whether the amount of iron transferred across the placenta is proportional to iron available in the mother or the whether the fetus receives the iron preferentially as per its requirements. Many studies are done to find a correlation between maternal and neonatal iron status, but the results are conflicting [9]. Some studies reported that transfer of iron to fetus occur independent of maternal iron levels, leading to severe deficiency in mother [10,11]. In severe maternal iron deficiency, even upregulation of receptors fail to provide sufficient iron transfer to fetus, leading to low reserves of fetal iron stores [12,13].

A large proportion of iron which fetus receives comes directly from iron absorbed from the maternal gut rather than the maternal stores. A study by O’Brien et al. concluded that transfer of dietary...
iron to the fetus is related to maternal iron status [5]. Physiological changes such as increased plasma volume and erythropoiesis during pregnancy have profound impact on biochemical parameters used for assessing iron stores. Multiple parameters including Hb, serum iron, red cell distribution width, mean corpuscular volume, TIBC, percentage of transferrin saturation, and serum ferritin were used by several investigators. Serum ferritin found to be the single best parameter to assess iron status in pregnant mothers; although it can elevate by inflammation [14]. It’s still unclear about the optimal parameter for the assessment of iron status in the neonatal period. Serum ferritin is the major storage form and correlate with body iron stores, and the cutoff values for neonates recently established [15].

In the current study population, there was a significant positive correlation between maternal Hb and neonatal ferritin concentrations at birth. Singla et al., in their study found a linear correlation between maternal Hb with cord Hb and iron levels [16]. No correlation was observed between maternal and neonatal ferritin concentrations at birth. Rios et al., Kelly et al., and Puolakka et al. did not find any correlation between maternal and umbilical cord ferritin levels [17-19]. The threshold of maternal ferritin concentration below which fetal iron accretion is affected was estimated as <12 µg/L [20]. At this level, even with upregulation of receptors not much iron will bind to transferrin receptors on the maternal side of placenta resulting in less transfer of iron to the fetus. In our study, significant lower ferritin concentrations were observed in the babies with maternal ferritin levels <12 µg/L than those born to mothers with ferritin level >12 µg/L. Similar observations were made by Jaime-Perez et al. [20].

Transfer of iron to the fetus begins in the first trimester of pregnancy, but maximum transport occurs after 30 weeks of gestation. Fetal transfer of iron will be interrupted due to premature delivery [7]. In this study, iron stores in preterm neonates were significantly less as compared to the term neonates on cord blood samples. Similar observations were also made by Mukhopadhyay et al., Jansson et al., and Messer et al. [21-23]. Serum ferritin levels reflecting iron stores progressively increase with gestational age, with mean levels of 63 µg/l at 23 weeks and 171 µg/l at 41 weeks, respectively [15]. The optimal timing for administration of prophylactic enteral iron supplementation in preterm and very low birth weight infants is unclear [24]. The American Academy of Pediatrics recommends 2 mg/kg/day of supplemental iron on milk feeding from 1 month of age and extending through 12 months of age [25]. In the present study, preterm neonates also showed significant lower Hb levels at 4 weeks compared to term neonates. Neonates with low iron stores at birth tend to have significantly lower iron stores at 4-week postnatal age.

A major limitation of this study was that it has not taken into account influence of other maternal factors such as pregnancy-induced hypertension and gestational diabetes on neonatal stores. Second, preterm neonates are not categorized into small for

<p>| Table 2: Comparison among maternal and neonatal iron indices |</p>
<table>
<thead>
<tr>
<th>Maternal parameters</th>
<th>Neonatal Hb</th>
<th>Neonatal iron</th>
<th>Neonatal TIBC</th>
<th>Neonatal transferrin</th>
<th>Neonatal ferritin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb</td>
<td>Pearson co</td>
<td>0.26</td>
<td>0.00</td>
<td>0.39</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.90</td>
<td>0.93</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Iron</td>
<td>Pearson co</td>
<td>0.03</td>
<td>0.39</td>
<td>0.01</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.83</td>
<td>0.89</td>
<td>0.00</td>
<td>0.62</td>
</tr>
<tr>
<td>TIBC</td>
<td>Pearson co</td>
<td>0.00</td>
<td>0.00</td>
<td>0.11</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.00</td>
<td>0.13</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Transferrin</td>
<td>Pearson co</td>
<td>0.15</td>
<td>0.15</td>
<td>0.31</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.11</td>
<td>0.15</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td>Ferritin</td>
<td>Pearson co</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.58</td>
<td>0.64</td>
<td>0.64</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Pearson co: Pearson correlation coefficient. TIBC: Total iron-binding capacity, Hb: Hemoglobin

| Table 3: Comparison of effect of low maternal stores on neonatal indices |
|---------------------------|----------------------|----------------------|----------------------|
| Cord blood indices | Maternal ferritin <12 µg/dl | Maternal ferritin >12 µg/dl | “p” |
| Neonatal Hb (g/dl) | 16.3±1.9 | 15.1±2.1 | 0.03 |
| Neonatal iron (µg/dl) | 143.1±57.5 | 128.6±57.4 | 0.24 |
| Neonatal TIBC (µg/dl) | 278.9±79.8 | 248.8±76.9 | 0.07 |
| Neonatal transferrin (%) | 48.6±19.5 | 53.8±24.6 | 0.37 |
| Neonatal ferritin (µg/L) | 115.2±65 | 155.1±81 | 0.02 |

TIBC: Total iron-binding capacity, Hb: Hemoglobin
gestational age (SGA) and appropriate for gestational age groups as there was small number of SGA preterm neonates in the study.

CONCLUSION

There is no correlation between maternal iron stores and neonatal iron stores unless there is severe maternal depletion indicated by maternal serum ferritin levels <12 µg/L. Iron stores in preterm neonates are significantly less in the face of severe depleted maternal stores. Severe maternal hypoferritinemia and gestational age significantly influence the iron status of neonates at birth and those neonates born with low iron stores at birth are likely to have low iron stores at 4 weeks. Therefore, early supplementation of iron at 4 weeks of age particularly in preterm neonates and in those neonates whose maternal serum ferritin levels are <12 µg/L may be useful.

REFERENCES

Funding: None; Conflict of Interest: None Stated.

How to cite this article: Swetha K, Tarakeswararao P, Saisunilkishore M. Relationship between maternal iron and cord blood iron status: A prospective study. Indian J Child Health. 2017; 4(4):595-598.