ABSTRACT

Wilson’s disease is a rare inborn error of metabolism characterized by abnormal deposition of copper in various tissues caused by the inability to excrete copper into the bile. Wilson’s disease is also known as hepatolenticular degeneration because liver and lentiform nuclei in the brain are the most commonly involved areas. Cerebral involvement in Wilson’s disease results in typical characteristic radiographic signs on magnetic resonance imaging (MRI). Here, we report the case of a 27-year-old female who presented with neurologic manifestations and diagnosed as Wilson’s disease with typical MRI findings.

Key words: Copper metabolism, Face of giant panda sign, Magnetic resonance imaging, Wilson’s disease

Wilson’s disease is an autosomal recessive inborn error of copper metabolism caused due to mutation of ATP7B gene located on the chromosomal region 13q21, which codes for the synthesis of an ATP7B protein [1]. ATP7B protein resides in the hepatocytes and its function is to incorporate six copper molecules into apoceruloplasmin and thus form ceruloplasmin. Mutation in the ATP7B gene leads to defective ATP7B protein and consequent progressive accumulation of copper in hepatocytes [2]. In Wilson’s disease, serum ceruloplasmin level will be low and excessive copper is seen in plasma and urine, leading to deposition of copper in various tissues such as liver, brain, and eyes.

The age of presentation in Wilson’s disease is from early childhood to 50 years [3]. Wilson’s disease has a slight male predominance (52%) [4]. Hepatic manifestations such as chronic liver disease or hemolytic anemia are more common in young children, whereas neurological manifestations are more common in young adults. Bilateral symmetrical basal ganglia and brainstem abnormalities are the most common findings on magnetic resonance imaging (MRI) in Wilson’s disease, followed by cerebral atrophy and asymmetric central white matter abnormalities. We report a case of a young adult who presented with neurologic manifestations and diagnosed as Wilson’s disease with typical MRI findings.

CASE REPORT

A 27-year-old female patient presented to the department with a history of slurring of speech, postural instability for 1 month, and tremors of the right upper limb for 10 days. No history of similar complaints in the family members was found. On general examination, the patient had no pallor, icterus, clubbing/cyanosis, and lymphadenopathy. The patient had stable vitals with a blood pressure of 130/80 mmHg, pulse rate=74/min, respiratory rate=14/min, and temperature=98°F. Neurological examination showed dysarthria, ataxic gait, and tremors of the right upper limb. The ophthalmological examination revealed Kayser–Fleischer rings in both eyes (Fig 1).

The laboratory investigations included hemoglobin=13.4 g/dl (normal=12–15 g/dl); white blood cells=5.8 × 10³/mm³ (normal=4.0–10.9 × 10³/mm³), red blood cells=4.14 × 10⁹/mm³ (normal=4.0–5.4 × 10⁹/mm³), platelet count=202 × 10⁹/mm³ (normal=150–400 × 10⁹/mm³), serum ceruloplasmin=3.27 mg/dl (normal=18–35 mg/dl), and 24 h urine copper=230 µg/day (normal=2–80 µg/day).

Based on the clinical examination and above-mentioned investigations, a provisional diagnosis of Wilson’s disease was considered. The ultrasound of the abdomen showed coarse echotexture of the liver (Fig 2). However, liver function tests including total bilirubin, alkaline phosphatase, serum glutamic-oxaloacetic transaminase, and serum glutamic pyruvic transaminase were normal.

MRI of the brain revealed bilateral symmetrical T2-weighted (T2W) and FLAIR hyperintensities involving caudate, putamen, thalami, midbrain, pons, cerebellar dentate nuclei, and inferior cerebellar peduncle (Fig 3) with hypointense red nuclei and substantia nigra forming “face of giant panda” sign (Fig 4). The atrophy of bilateral putamen was noted. Mild hyperintensity on diffusion-weighted imaging noted in midbrain with minimal reduction of apparent diffusion coefficient values (Fig 5), and T1-weighted (T1W) hyperintensity noted in bilateral basal ganglia and subthalamic nuclei suggestive of hepatic encephalopathy (Fig 6).

Hence, a final diagnosis of Wilson’s disease was made, and treatment with penicillamine 750 mg/day and zinc acetate 150 mg/day along with clonazepam 0.5 mg/day was initiated.
On subsequent follow-up after 1 week, the patient showed symptomatic improvement.

DISCUSSION

Wilson’s disease is a rare autosomal recessive disorder of copper metabolism. The deposition of copper occurs in various tissues, leading to toxicity. An estimated worldwide prevalence of Wilson’s disease is one case per 30,000 live births in most populations [5]. Coffey *et al*. conducted a genetic study of Wilson’s disease using molecular sequencing in the United Kingdom which suggested a higher prevalence of one case in 7021 [6].

The early manifestations of Wilson’s disease include yellowish discoloration of the skin and mucous membranes and abnormal liver function tests due to hepatic dysfunction. Hepatic presentations may vary from acute liver failure, autoimmune hepatitis, cirrhosis, and hepatocellular carcinoma [7,8]. After the liver disease, neurological manifestations such as the flexion-extension tremor of a wrist, grimacing, difficulty in writing, slurred speech, and drooling.
Wilson’s disease: A case report with imaging findings and review of literature

Narra et al.

Early diagnosis of Wilson’s disease with clinical, biochemical, and characteristic radiological findings is very essential to initiate the treatment early and to halt the progression of the disease.

REFERENCES

Funding: None; Conflict of Interest: None Stated.

How to cite this article: Narra R, Rao B, Putcha A. Wilson’s disease: A case report with review of literature. Indian J Case Reports. 2018;4(6):431-433.

Doi: 10.32677/IJCR.2018.v04.i06.006